
VIRUS BULLETIN www.virusbtn.com

44444 JULJULJULJULJULY 2004Y 2004Y 2004Y 2004Y 2004

64-BIT RUGRA64-BIT RUGRA64-BIT RUGRA64-BIT RUGRA64-BIT RUGRATSTSTSTSTS
Peter Ferrie and Péter Ször
Symantec Security Response, USA

On 26 May 2004, we received the first known virus for the
64-bit Windows operating system on the Intel Itanium
platform. We decided to call it W64/Rugrat.3344.A.

Just like some of its predecessors (specifically W32/Chiton
– see VB, June 2002, p.4), Rugrat is aware of Thread Local
Storage, helping it to make the first successful tip toe
towards painless infection of Windows DLLs – at least in the
.B variant of the virus.

BLAST FROM THE PASTBLAST FROM THE PASTBLAST FROM THE PASTBLAST FROM THE PASTBLAST FROM THE PAST

As might be expected, the text in the virus body suggests
that Rugrat and Chiton share the same author: ‘Shrug - roy
g biv’, who is now a member of the notorious 29A
virus-writing group.

W64/Rugrat uses a fairly simple idea: take the 32-bit code
and port it to 64 bits – but the devil is in the detail.

Writing assembly for the Itanium is not simply a case of an
everyday port of a 32-bit C application to 64-bit, which
even your grandmother could do with a little advice. This is
in contrast to the impression we were given when Microsoft
introduced the platform with a demonstration: “Here is
Larry who ported a million lines of C code in two weeks!”.

Obviously Larry was not the kind who used to cast his
pointers with DWORDs in front. Larry probably did not
need to port a GUI either, and he obviously was not
interested in writing a memory scanner to scan the 64-bit
address space for virus code. Larry needed just one thing:
earplugs to reduce the ventilation noise coming out of the
strange box that he first mistook for an atomic reactor. But
the earplugs were disposed of a long time ago, along with
the beta boards, and nowadays it is the beautiful Itanium2
that resides under Larry’s desk.

While Larry did not care to open the guide for the Itanium
instruction set, ‘roy g biv’ did. One question comes to mind:
might ‘roy g biv’ have owned an IA64 box? He probably
did, but he could equally have used an emulator on a bulked
up PC.

Intel’s IA64 assembly code is designed for explicit
parallelism, so coding well in IA64 assembly code requires
the ability to ‘think in parallel’. Unfortunately, when this is
done well, the resulting code can be very difficult to read,
especially when the virus code is further obfuscated. So, in
turn, we started to think in parallel to share the fun of the
analysis of this new kid on the block.

ROUND AND ROUNDROUND AND ROUNDROUND AND ROUNDROUND AND ROUNDROUND AND ROUND

The first time Rugrat is executed, it checks the event that
caused its execution. The virus replicates only during the
DLL_PROCESS_DETACH event, which occurs when an
application is exiting. The reason that Rugrat does this
could be because an application taking an extended period
of time to terminate is far less noticeable than an application
taking an extended period of time to start.

During Thread Local Storage events, it is NTDLL.DLL
(the NATIVE API) that calls the Thread Local Storage
entry point. That call leaves in the B0 register of Itanium
processors a pointer into the NTDLL.DLL address space.
The virus uses this fact to gain access to NTDLL.DLL,
in order to retrieve the addresses of the API functions that
it requires.

The virus uses a CRC method to match the API names. The
use of the CRC method means that the API names are not
visible in the virus code, while also reducing the size of the
virus code.

The virus uses a few Win64 APIs from three different
libraries: NTDLL.DLL, SFC_OS.DLL and
KERNEL32.DLL. From NTDLL.DLL it picks
LdrGetDllHandle(), RtlAddVectoredExceptionHandler()
and RtlRemoveVectoredExceptionHandler(). The virus
supports vectored exception handling to avoid crashing
during infections. The use of LdrGetDllHandle() makes it
simpler to gain access to other modules. From
SFC_OS.DLL, Rugrat uses the SfcIsFileProtected()
function to avoid infecting executables that are protected by
the System File Checker (SFC).

The following 16 functions are used from KERNEL32.DLL
to implement a standard direct action file infection of an
IA64 Portable Executable image using file mapping:

CreateFileMappingA() GlobalAlloc()

CreateFileW() GlobalFree()

CloseHandle() LoadLibraryA()

FindFirstFileW() MapViewOfFile()

FindNextFileW SetCurrentDirectoryW()

FindClose() SetFileAttributesW()

GetFullPathNameW() SetFileTime()

GetTickCount() UnmapViewOfFile()

As expected the virus will set the host’s time/date stamp
back after each infection, as well as its attributes, which it
clears before infection.

Rugrat shows one major functional difference from Chiton
– Rugrat uses only Unicode functions, and does not support
ANSI functions, perhaps because 64-bit Windows is based
on Windows NT, which is entirely Unicode under the hood.

VIRUS ANALYSIS 1

VIRUS BULLETIN www.virusbtn.com

55555JULJULJULJULJULY 2004Y 2004Y 2004Y 2004Y 2004

The virus searches for files in the current directory and all
subdirectories, using a linked list instead of a recursive
function. This is important from the point of view of the
virus author, because the .B variant of Rugrat infects DLLs,
whose stack size can be very small.

FILFILFILFILFILTERSTERSTERSTERSTERS
Files are examined for their potential to be infected,
regardless of their suffix, and will be infected if they pass a
very strict set of filters. The first of these filters is the
support for the System File Checker that exists in Windows
XP/2003 (Note the SFC_OS module name). The remaining
filters include the condition that the file being examined
must be a character mode or GUI application for the Intel
IA64 CPU, that the file must have no digital certificates, and
that it must have no bytes outside of the image.

The IA64 CPU introduces the concept of ‘predication’ to the
execution flow, which allows a programmer to remove
certain branches from the code, and to replace a block with
a predicate check instead. A sample check for the file type
might look like this:

ld2 r30 = [r32]

mov r31 = 0x5A4D;;

cmp.eq p1 = r30, r31

(p1) ld4 r30 = [r8]

(p1) mov r31 = 0x4550;;

(p1) cmp.eq p1 = r30, r31

The first ‘cmp’ instruction sets the P1 register only if the
condition is met. If it is not met, any instruction that is
predicated by the P1 register will be ignored by the
processor. The filtering code could be considered
‘predication abuse’, since it contains more than 30
predicated instructions in a row, including predicated
compares, which reuse active predicate registers. The
infection code contains several such blocks.

TOUCH AND GOTOUCH AND GOTOUCH AND GOTOUCH AND GOTOUCH AND GO
When a file that meets the infection criteria is found, it will
be infected. If relocation data exist at the end of the file, the
virus will move the data to a larger offset in the file, and
place its code in the gap that has been created. If there are
no relocation data at the end of the file, the virus code
will be placed here. For the .A variant of Rugrat, which
does not infect DLLs, the relocation data check is almost
never used, since the majority of executable files do not
contain relocation data (a ‘global pointer’ is used instead,
see below). The .B variant of Rugrat infects DLLs in the
same way as for applications, meaning that even ‘resource-
only’ DLLs that have no main entry point can still be a
source of infection, since the Thread Local Storage entry

point will still be called.

The virus carries its own Thread Local Storage directory,
which will be used if the target file contains no directory
at all. The virus carries its own callback array for those
hosts whose Thread Local Storage directory contains
no callbacks.

When it encounters a host that already has a Thread Local
Storage directory containing callbacks, the virus will save
the address of the first callback and replace it with the
address of the virus code.

Once the infection is complete, the virus will calculate a
new file checksum, if one existed previously, before
continuing to search for more files.

When the file searching has finished, the virus will allow
the application to exit by forcing an exception to occur. This
technique appears twice in the virus code, and is an elegant
way to reduce the code size, in addition to functioning as an
effective anti-debugging method.

Since the virus has protected itself against errors by
installing a Vectored Exception Handler, the simulation of
an error condition results in the execution of a common
block of code to exit a routine. This avoids the need for
separate handlers for successful and unsuccessful code
completion. The Vectored Exception Handling is a
heap-based dynamic exception-handling mechanism of
newer Windows releases, which provides an alternative to
the Structured Exception Handling, a stack-based
mechanism. SEH is more vulnerable to exploitation (see
VB, September 2001, p.4) than VEH, and VEH has some
other benefits such as up-front exception control.
Nonetheless, the exploitation of VEH by attackers is also
becoming common in the field.

EXCEPTION TO THE RULEEXCEPTION TO THE RULEEXCEPTION TO THE RULEEXCEPTION TO THE RULEEXCEPTION TO THE RULE

The cause of the exception is more subtle in Rugrat than in
Chiton. On the x86 CPU, exception-causing instructions
such as INT 3 can appear anywhere in the code, without
restriction. On the IA64 CPU, though, instructions are
placed in ‘slots’, and collected in ‘bundles’ that execute in
parallel, so an exception-causing instruction in a bundle that
contains other instructions could cause those instructions to
be interrupted. Additionally, when resuming from an
exception handler, execution continues from the slot in
which the exception occurs, which results in the instructions
in the earlier slots of the same bundle not being executed.

These two restrictions are the likely reason why the virus
author chose an instruction that is always placed in the first
slot of a bundle. The instruction itself, LD1 R8 = [R0], also
looks legitimate, until it is understood that the R0 register

VIRUS BULLETIN www.virusbtn.com

66666 JULJULJULJULJULY 2004Y 2004Y 2004Y 2004Y 2004

always contains the value 0, and attempting to access the
0th byte of memory always causes an exception.

GLOBALISAGLOBALISAGLOBALISAGLOBALISAGLOBALISATIONTIONTIONTIONTION

The IA64 uses a global pointer to access variables. This
avoids the costly application of relocation items when a file
is loaded to an address other than its default virtual address.
This also makes the IA64 code a little more compact,
although it still appears large to eight-bit eyes.

The global pointer value can be retrieved from the Portable
Executable GlobalPtr header field. Every structure –
exported function addresses, Vectored Exception Handlers,
even the Thread Local Storage Callback itself – is required
to be in the form of a virtual address followed by a global
pointer value, and the virus supplies these structures
correctly. This structure is called a PLABEL_DESCRIPTOR,
and the compiler and the debugger do a perfect job of
hiding it, so guys like Larry need not worry about it.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

The adoption of IA64 machines appears to be slow. The lack
of IA64 machines restricts the scope of any potential
outbreak, and this virus was simply a proof that it was
possible. What can we expect next? A 32-bit and 64-bit
cross-infector seems obvious.

Additionally, the news of AMD64 is spreading, and systems
are sold for as little as $700, “introducing the only
Windows-compatible 64-bit processor and the smooth
transition to 64 bits”. Microsoft will be ready with the
AMD64 release by the end of this year. How much smoother
could the transition be for the virus writers?

Chuckie: “So, we got a baby now.”

Lillian DeVille: “I wished we’d a talked about it first. I
don’t know if I’m ready.”

Rugrats, Klasky Csupo Inc.

Let’s hope that this baby doesn’t grow up.

W64/Rugrat.3344!IA64

Type: Direct-action parasitic
appender/inserter.

Infects: Windows IA64 PE files.

Payload: None.

Removal: Delete infected files and restore
them from backup.

